Chapter 3
Supervised learning:
Multilayer Networks I



Backpropagation Learning

Architecture:

— Feedforward network of at least one layer of non-linear hidden
nodes, e.g., # of layers L > 2 (not counting the input layer)

— Node function is differentiable
most common: sigmoid function S(net) =

Learning: supervised, error driven,
generalized delta rule

Call this type of nets BP nets
The weight update rule
(gradient descent approach)
Practical considerations
Variations of BP nets iy
Applications

1

1+ E[—net}




Backpropagation Learning

 Notations:
— Weights: two weight matrices:
WO from input layer (0) to hidden layer (1)
w'%Y from hidden layer (1) to output layer (2)

Wé%’lo)weight from node 1 at layer O to node 2 in layer 1
— Training samples: pair of {(x,,d )p=1..., P}

SO

It is supervised learning

— Input pattern: X = (X 1,000 Xp )
— Output pattern:  0p = (Op 10 0p k)
— Desired output:  d, =(d5,..., d )

— Er

ror: 1, =0, ; —dIO J error for output jwhen x,, is applied

sum square error = ZZ(IP i)’

Thi

p=1j=1
is error drives learning (change W™® and w®?)



Backpropagation Learning

« Sigmoid function again:
— Differentilable:

S(x) =
() 1+e™”
S'(x)=- (1+e_x)2 -(L+e7)
_ 1 —X T _
T (1+ e‘x)2 (=7 Saturation S i
_ aturation
1 p X region region

1+e™* 1+e7*

=3(X)(1=3(x))

— When |neq is sufficiently large, it moves into one of the two
saturation regions, behaving like a threshold or ramp function.

e Chalin rule of differentiation

. dz dz dy dx
ifz="1(y),y= ,X=h(t)then—=—-—.—=f"' "(x)h'(t
(y),y =9(x),x=h(t) dt ~dy dx dt (y)g'(x)h'(t)




Backpropagation Learning

* Forward computing:
— Apply an input vector xto input nodes
— Computing output vector X9 on hidden layer
(1) S(net(l)) S(Z W(l 0)
— Computlng the output vector oon output layer
0, =S(nett?) = S(Z wiex\Y)
— The net is said to be a map from input xto output o
* Objective of learning: .-
— reduce sum square error pZ_llJZ_ll('p )’
for the given Ptraining samples as much as possible (to
zero if possible)



Backpropagation Learning

* Idea of BP learning:
— Update of weights in w21 (from hidden layer to output layer):
delta rule as in a single layer net using sum square error

— Delta rule is not applicable to updating weights in w9 (from
Input and hidden layer) because we don’t know the desired
values for hidden nodes

— Solution: Propagating errors at output nodes down to hidden
nodes, these computed errors on hidden nodes drives the update
of weights in w9 (again by delta rule), thus called error
BACKPROPAGATION (BP) learning

— How to compute errors on hidden nodes is the key

— Error backpropagation can be continued downward if the net
has more than one hidden layer

— Proposed first by Werbos (1974), current formulation by
Rumelhart, Hinton, and Williams (1986)



Backpropagation Learning
» Generalized delta rule:
— Consider sequential learning mode: for a given sample (x,, @)
E= Zk (1 p,k)2
— Update of weights by gradient descent
For weight in w2 D:  Aw oc (—0E /oy )
For weight in L 0): AW%O) oc (—OE /@W(1 O
— Derivation of update rule for w2 b:
since £is a function of /, = d, — 0, dj.— o, is a function net(?,

and net(®is a function of wi’?, by chain rule

dE  OE  d(dy — o) dInet;”
HWE:}” d(dy, — o) ﬂnetm Jw f_?]
= —2(d, — o,)8' (netm) ;”




Backpropagation Learning

~ Derivation of update rule for w:” O ’Ok(z )
consider hidden node ;. \ W
weightw? influences net(" Q
it sends S(net(?)to all output nodes w0
. all K'terms in Eare functions of w(:? O,
E=>,(d —0,)%, 0, =S(net?), net? = Zj Xﬁl)Wﬁ,zjl),
x$ = S(net$"), net? = > xwit?

by chain OE oS(net®)  onet® @X—Sl) onet®
rule 00y onetl? axgl) on et}l) awﬁ

o O N N N\ |

oFE K ’ (2) (2.1) of (1)
. ZZ{_E(d“ — ok)S (neth )wkj S (netj ):L:}




Backpropagation Learning

— Update rules:

for outer layer weights n? b :
JE

Hwﬁ;lj

(2)y (1)
= —2(dp — o,)S'(net, )z ;
&mfﬂlj =n X 61: W m:{r_lj Whereé‘k :(dk —Ok)Sl(netlEZ))

for inner Iayer weights b 9)

Y. {1 0) Z {—Z(d;; — or)8' (netiﬂ) wf;jﬁ (net?]) :1!,'}

0

i

Weighted sum of errors
from output layer



Algorithm Backpropagation;

Start with randomly chosen weights;
while MSE is unsatisfactory
and computational bounds are not exceeded, do
for each input pattern x,, 1 < p < P,
Compute hidden node inputs (net{ :')
Compute hidden node outputs (:L
Compute inputs to the output nodes (net __,;)
Compute the network outputs (op);

Modify outer layer weights:

{21

Aw,' = n(dpr — opi) S (net ):L

Modify weights between input & hidden nodes:
“ D =n Z ( ﬂp._;;)S’(netEi)wk ]) S'(net{ DTp

end-for Note: if S is a logistic function,

end-while, then S1x) =X (1 - X))




Backpropagation Learning

 Pattern classification:
— Two classes: 1 output node
— N classes: binary encoding (log N) output nodes
better using N output nodes, a class is represented as
o,...,,0,1,0,..,0)

— With sigmoid function, nodes at output layer will never be 1 or
0, buteither1—cor ¢

— Error reduction becomes slower when moving into saturation
regions (when gis small).

— For fast learning, for a given error bound &
seterror /,,=0if|d,,—0,d< ¢

— When classifying a input x using a trained BP net, classify it to
the A7 class if with a. > g, forall //=k



Backpropagation Learning

 Pattern classification: an example

— Classification of myoelectric signals

* Input pattern: 3 features (NIF, VT, RR), normalized to real
values between 0 and 1

 Qutput patters: 2 classes: (success, failure)

— Network structure: 2-5-3
« 3 Input nodes, 2 output nodes,
1 hidden layer of 5 nodes
* 1=0.95, o =0.4 (momentum)

— Error bound £=0.05

— 332 training samples

— Maximum iteration = 20,000

— When stopped, 38 patterns remain misclassified



lteration No. | Fraction of samples misclassified | MSE
100 0. 159639 0.213797
200 0. 150602 0. 189983
300 0. 132530 0.172497
400 0.135542 0.170050
500 0. 132530 0. 168683
600 0.132530 0168220
700 0.129518 01672003
K00 0.129518 (167318
900 0.129518 0. 167395
1000 0. 126506 0167376
2000 0.123494 0. 166275
3000 0.129518 0165759
4000 0.123494 0.151863
S000 0123494 0.151121
10000 0.111446 0.149668

L 1000
L2000
L3000
L4000
LS00
LGl
L7000
L#000
L0000
20000

0.114458
0.114458
0.111445
0.114458
0111446
0.114438
0111445
0.114458
0.114458
0.114458

0.149576
0.149664
-
0.146705
14883
0.147453
0.149184
0.147182
0.147353

0.147207

0.147962




Actual Class in which network places sample: | 1| 2 3
Desired Target Class
Class 1 75| (5) 0O
Class 2 (3)| 88
Class 3 (2) 19)| 131

38 patterns misclassified




Backpropagation Learning

« Function approximation:

— For the given w= (w19, w21), o= fx): it realizes a functional
mapping from 7.

— Theoretically, feedforward nets with at least one hidden layer of
non-linear nodes are able to approximate any L2 functions (all
square-integral functions, including almost all commonly used
math functions) to any given degree of accuracy, provided there
are sufficient many hidden nodes

— Any L2 functlon f(x) can be approximated by a Fourier series
fn(z) = Z Z e eIk 2)

ky=—N bp=—IN

The MSE converges to 0 when N — o

lim f |flx)— fn (:L)| de =0
[0,1]"

J'-"'HT—}DCI

It has been shown the Fourier series approximation can be realized
with Feedforward net with one hidden layer of cosine node
function

— Reading for grad students (Sec. 3.5) for more discussions



Strengths of BP Learning

Great representation power
— Any L2 function can be represented by a BP net

— Many such functions can be approximated by BP learning
(gradient descent approach)

Wide applicability of BP learning
— Only requires that a good set of training samples is available

— Does not require substantial prior knowledge or deep
understanding of the domain itself (ill structured problems)

— Tolerates noise and missing data in training samples (graceful
degrading)

Easy to implement the core of the learning algorithm
Good generalization power

— Often produce accurate results for inputs outside the
training set



Deficiencies of BP Learning

 Learning often takes a long time to converge
— Complex functions often need hundreds or thousands of epochs

* The net is essentially a black box

— It may provide a desired mapping between input and output
vectors (., 0) but does not have the information of why a
particular x i1s mapped to a particular o.

— It thus cannot provide an intuitive (e.g., causal) explanation for
the computed result.

— This is because the hidden nodes and the learned weights do not
have clear semantics.
« What can be learned are operational parameters, not general,
abstract knowledge of a domain
— Unlike many statistical methods, there is no theoretically well-
founded way to assess the quality of BP learning

« What is the confidence level one can have for a trained BP net, with
the final E (which may or may not be close to zero)?

« What is the confidence level of o computed from input x using such
net?



 Problem with gradient descent approach
— only guarantees to reduce the total error to a local minimum.
(£ may not be reduced to zero)
— Cannot escape from the local minimum error state
— Not every function that is representable can be learned

— How bad: depends on the shape of the error surface. Too
many valleys/wells will make it easy to be trapped in local
minima

— Possible remedies:

 Try nets with different # of hidden layers and hidden nodes

(they may lead to different error surfaces, some might be better
than others)

 Try different initial weights (different starting points on the
surface)

* Forced escape from local minima by random perturbation (e.g.,
simulated annealing)



» Generalization is not guaranteed even if the error Is
reduced to O

— Over-fitting/over-training problem: trained net fits the
training samples perfectly (£ reduced to 0) but it does not
give accurate outputs for inputs not in the training set

— Possible remedies: lrror
« More and better samples
 Using smaller net if possible
« Using larger error bound

(forced early termination)
* Introducing noise into samples |
— modify (x,..., X) to irror on training data
(x0,..., X,0,) Where a,are '
small random displacements crror on test data
 Cross-Validation hegins to worsen
— leave some (~10%) samples as test data (not used for weight update)
— periodically check error on test data
— Learning stops when error on test data starts to increase

FError on test data

Instant when Training Time



» Network paralysis with sigmoid activation function

— Saturation regions:
S(x)=1/1+e"),itsderivative S'(x) = S(x)(1-S(x)) =0
when X — oo,
When x fallsin a saturation region, S(x) hardly changes its value
regardless how fast the magnitude of x increases

— Input to an node may fall into a saturation region when
some of its incoming weights become very large during
learning. Consequently, weights stop to change no matter

how hard you try.
AE

_ ﬂm{f}lj
— Possible remedies:
 Use non-saturating activation functions
« Periodically normalize all weights
W j =W j /w ],

= —E(dg_ — Dk)EF(TLEtLE])ﬂ!;”



« The learning (accuracy, speed, and generalization) Is
highly dependent of a set of learning parameters
— Initial weights, learning rate, # of hidden layers and # of

nodes...
— Most of them can only be determined empirically (via

experiments)



Practical Considerations

A good BP net requires more than the core of the learning
algorithms. Many parameters must be carefully selected to
ensure a good performance.

« Although the deficiencies of BP nets cannot be completely
cured, some of them can be eased by some practical means.

* Initial weights (and biases)
— Random, [-0.05, 0.05], [-0.1, 0.1], [-1, 1]

— Normalize weights for hidden layer (14! 9) (Nguyen-Widrow)
« Random assign initial weights for all hidden nodes
 For each hidden node /, normalize its weight by

wito = g.wito /HW(1 O)H where 5 =0.7Ym
m =# of hlddent nodes, n=# of input nodes
ngl’O)H = /3 after normalization

2

 Avoid bias in weight initialization:



 Training samples:
— Quality and guantity of training samples often determines the
quality of learning results
— Samples must collectively represent well the problem space

« Random sampling
* Proportional sampling (with prior knowledge of the problem space)

— # of training patterns needed: There is no theoretically idea

number.
« Baum and Haussler (1989): P = W/e, where

W: total # of weights to be trained (depends on net structure)

e: acceptable classification error rate
If the net can be trained to correctly classify (1 — e/2)P of the P
training samples, then classification accuracy of this netis 1 — e for
Input patterns drawn from the same sample space

Example: W = 27, e = 0.05, P = 540. If we can successfully train the
network to correctly classify (1 — 0.05/2)*540 = 526 of the samples,
the net will work correctly 95% of time with other input.



« How many hidden layers and hidden nodes per
layer:
— Theoretically, one hidden layer (possibly with many hidden
nodes) is sufficient for any L2 functions

— There is no theoretical results on minimum necessary # of
hidden nodes

— Practical rule of thumb:
* n = # of input nodes; m = # of hidden nodes
* For binary/bipolar data: m = 2n
* For real data: m >> 2n

— Multiple hidden layers with fewer nodes may be trained
faster for similar quality in some applications



Data representation:

— Binary vs bipolar
* Bipolar representation uses training samples more efficiently
A =n-px AP =05 xP
no Iearnlng will occur when x; = O or x{? =0 with binary rep.
« # of patterns can be represented with n input nodes:
binary: 2”n
bipolar: 2*(n-1) if no biases used, this is due to (anti) symmetry
(if output for input xis o, output for input —xwill be —0)
— Real value data
* Input nodes: real value nodes (may subject to normalization)
« Hidden nodes are sigmoid
» Node function for output nodes: often linear (even identity)

e 0 =Y wZIx®

 Training may be much slower than with binary/bipolar data (some
use binary encoding of real values)



Variations of BP nets

« Adding momentum term (to speedup learning)
— Weights update at time t+1 contains the momentum of the
previous updates, e.g.,

t
=1
an exponentially vxfeighted sum of all previous updates

— Avoid sudden change of directions of weight update
(smoothing the learning process)
— Error is no longer monotonically decreasing

« Batch mode of weight updates
— Weight update once per each epoch (cumulated over all P
samples)
— Smoothing the training sample outliers
— Learning independent of the order of sample presentations
— Usually slower than in sequential mode



 Variations on learning rate 77
— Fixed rate much smaller than 1
— Start with large 7, gradually decrease its value

— Start with a small 7, steadily double it until MSE start to
Increase

— Give known underrepresented samples higher rates
— Find the maximum safe step size at each stage of learning (to
avoid overshoot the minimum E when increasing 7)

— Adaptive learning rate (delta-bar-delta method)
* Eacfwweight w; ; has its own rate 77,

o |If remains in the same direction, increase 7, (£ has a
smm/ghjcurve In the vicinity of current )
o If changes the direction, decrease 7 ; (£ has a rough

curve in the vicinity of current w)



« EXxperimental comparison
— Training for XOR problem (batch mode)

— 25 simulations with random initial weights: success If £
averaged over 50 consecutive epochs is less than 0.04

— results
method simulations success Mean epochs
BP 25 24 16,859.8
ii%“éﬂlum 2> 25 2,056.3
e s | w |




» Quickprop
— If E1is of paraboloid shape
If £does not change sign from #-1 to #nor decreased In
magnitude, then its (local) minimum occurs at

w(t+ 1) = w(t) + E'(t)Aw(t —1)/(E'(t — 1) — E'(t))

Parabeloid Appromimation /—l' |

E - e Actual network error |I
. [

'
[
P
[}
[]

-y

w, A A A W)
| f
[ Trie error minimum
|

Mew weight uzing Mew weight
backpropagation uzing Cuickprop



» Other node functions
— Change the range of the logistic function from (0,1) to (a, b)

In particular, for bipolar sigmoid function (-1,1), we have

g(x) =21(x)-1and g'(x) = %(1+ g(x))A-9(x))

— Change the slope of the logistic function

f(X)=1/1+e ), .. = .
f=de-fep o 2 =

« Larger slope: ..
quicker to move to saturation regions; faster convergence
« Smaller slope: slow to move to saturation regions, allows
refined weight adjustment
o thus has a effect similar to the learning rate n (but more
drastic)
— Adaptive slope (each node has a learned slope)




— Another sigmoid function with slower saturation speed

f(x)zgarctan(x), f'(x)zE L >
/4 w1+ X
For large [X|, > Ismuch larger than L
1+ X 1+e™*)[1+e)

the derivative of logistic function
— A non-saturating function (also differentiable)

~[log@+x) ifx=0
FOO=1 loga—x) if x<0

If x>0
,then, f'(x) — 0 when |x| —

If x<O

f(x) =+

H
i
pa

=
|
>



Applications of BP Nets

« Asimple example: Learning XOR

— Initial weights and other parameters
 weights: random numbers in [-0.5, 0.5]
 hidden nodes: single layer of 4 nodes (A 2-4-1 net)
* biases used;
* learning rate: 0.02

— Variations tested
* binary vs. bipolar representation
« different stop criteria (targetswith £1.0 and with £0.8)
« normalizing initial weights (Nguyen-Widrow)

— Bipolar is faster than binary
 convergence: ~3000 epochs for binary, ~400 for bipolar
* Why?



Error
1o
Binary
nodes
| | 1 I |
500 1000 1,500 2.0 2500 3,000
Mumber of epochs
Figure 6.4 Total sgquared error for binary represeniaiwn of M problem
41—
3 =
Bipolar
2 -
nodes
'I | —
i 1

11040 200 300 3540
Mumber of cpochs

Figure 6.5 Total squared crror for bipolar representation of Xor problem.



— Relaxing acceptable error range may speed up convergence
- £1.0 is an asymptotic limits of sigmoid function,

« When an output approaches +1.0, it falls in a saturation
region
« Use Tawhere0<a<1.0(e.g.,+£0.8)

— Normalizing initial weights may also help

Random Nguyen-Widrow
Binary 2,891 1,935
Bipolar 387 224
Bipolar with 264 127
targets=10.8




Data compression
— Autoassociation of patterns (vectors) with themselves using
a small number of hidden nodes:
« training samples:: x.x (xhas dimension )
hidden nodes: m < n (A n-m-n net)

e

« [If training is successful, applying any vector x on input nodes
will generate the same x on output nodes

« Pattern zon hidden layer becomes a compressed representation
of x (with smaller dimension m < n)

 Application: reducing transmission cost

v
n

Communlcatlon
sender channel receiver




— Example: compressing character bitmaps.

 Each character is represented by a 7 by 9 pixel
bitmap, or a binary vector of dimension 63
10 characters (A — J) are used in experiment
 Error range:
tight: 0.1 (off: 0—-0.1; on: 0.9 - 1.0)
loose: 0.2 (off: 0—0.2; on: 0.8 —1.0)
« Relationship between # hidden nodes, error range,
and convergence rate
— relaxing error range may speed up
— increasing # hidden nodes (to a point) may speed up
error range: 0.1 hidden nodes: 10 # epochs 400+
error range: 0.2 hidden nodes: 10 # epochs 200+
error range: 0.1 hidden nodes: 20 # epochs 180+

error range: 0.2 hidden nodes: 20 # epochs 90+

no noticeable speed up when # hidden nodes increases to
beyond 22



» Other applications.
— Medical diagnosis
* Input: manifestation (symptoms, lab tests, etc.)
Output: possible disease(s)
» Problems:
— no causal relations can be established
— hard to determine what should be included as inputs
 Currently focus on more restricted diagnostic tasks

— e.g., predict prostate cancer or hepatitis B based on
standard blood test

— Process control
* Input: environmental parameters
Output: control parameters
 Learn ill-structured control functions



— Stock market forecasting

* Input: financial factors (CPI, interest rate, etc.) and
stock quotes of previous days (weeks)

Output: forecast of stock prices or stock indices (e.g.,
S&P 500)

 Training samples: stock market data of past few years
— Consumer credit evaluation

* Input: personal financial information (income, debt,
payment history, etc.)

 QOutput: credit rating
— And many more
— Key for successful application

» Careful design of input vector (including all
Important features): some domain knowledge

 Obtain good training samples: time and other cost



Summary of BP Nets

e Architecture

— Multi-layer, feed-forward (full connection between
nodes in adjacent layers, no connection within a layer)

— One or more hidden layers with non-linear activation
function (most commonly used are sigmoid functions)

« BP learning algorithm

— Supervised learning (samples (x,, d))
— Approach: gradient descent to reduce the total error
(why it is also called generalized delta rule)
— Error terms at output nodes
error terms at hidden nodes (why it is called error BP)
— Ways to speed up the learning process
« Adding momentum terms
 Adaptive learning rate (delta-bar-delta)
 Quickprop
— Generalization (cross-validation test)



« Strengths of BP learning

Great representation power

— Wide practical applicability

Easy to implement
Good generalization power

* Problems of BP learning

Learning often takes a long time to converge

The net is essentially a black box

Gradient descent approach only guarantees a local minimum error
Not every function that is representable can be learned
Generalization is not guaranteed even if the error is reduced to zero
No well-founded way to assess the quality of BP learning

Network paralysis may occur (learning is stopped)

Selection of learning parameters can only be done by trial-and-error

BP learning is non-incremental (to include new training samples, the
network must be re-trained with all old and new samples)



