
Chapter 3

Supervised learning:

Multilayer Networks I

Backpropagation Learning

• Architecture:

– Feedforward network of at least one layer of non-linear hidden
nodes, e.g., # of layers L ≥ 2 (not counting the input layer)

– Node function is differentiable

most common: sigmoid function

• Learning: supervised, error driven,

generalized delta rule

• Call this type of nets BP nets

• The weight update rule

(gradient descent approach)

• Practical considerations

• Variations of BP nets

• Applications

Backpropagation Learning

• Notations:

– Weights: two weight matrices:

from input layer (0) to hidden layer (1)

from hidden layer (1) to output layer (2)

weight from node 1 at layer 0 to node 2 in layer 1

– Training samples: pair of

so it is supervised learning

– Input pattern:

– Output pattern:

– Desired output:

– Error: error for output j when xp is applied

sum square error

This error drives learning (change and)

),...,(,1, nppp xxx 

),...,(,1, kppp ooo 

),...,(,1, kppp ddd 

)0,1(w
)1,2(w
)0,1(

1,2w

},...,1),{(Ppdx pp 

jpjpjp dol ,,, 

2
,

1 1

)(jp

P

p

K

j

l
 



)0,1(w)1,2(w

Backpropagation Learning

• Sigmoid function again:

– Differentiable:

– When |net| is sufficiently large, it moves into one of the two
saturation regions, behaving like a threshold or ramp function.

• Chain rule of differentiation

))(1)((

11

1

)(
)1(

1

)'1(
)1(

1
)('

1

1
)(

2

2

xSxS

e

e

e

e
e

e
e

xS

e
xS

x

x

x

x

x

x

x

x






































Saturation
region

Saturation
region

)(')(')(' then)(),(),(if thxgyf
dt

dx

dx

dy

dy

dz

dt

dz
thxxgyyfz 

Backpropagation Learning

• Forward computing:

– Apply an input vector x to input nodes

– Computing output vector x(1) on hidden layer

– Computing the output vector o on output layer

– The net is said to be a map from input x to output o

• Objective of learning:

– reduce sum square error

for the given P training samples as much as possible (to

zero if possible)

)()()1()1,2(
,

)2(


j
jjkkk xwSnetSo

)()()0,1(
,

)1()1(

i

iijjj xwSnetSx

2
,

1 1

)(jp

P

p

K

j

l
 

Backpropagation Learning

• Idea of BP learning:
– Update of weights in w(2, 1) (from hidden layer to output layer):

delta rule as in a single layer net using sum square error

– Delta rule is not applicable to updating weights in w(1, 0) (from

input and hidden layer) because we don’t know the desired

values for hidden nodes

– Solution: Propagating errors at output nodes down to hidden

nodes, these computed errors on hidden nodes drives the update

of weights in w(1, 0) (again by delta rule), thus called error

BACKPROPAGATION (BP) learning

– How to compute errors on hidden nodes is the key

– Error backpropagation can be continued downward if the net

has more than one hidden layer

– Proposed first by Werbos (1974), current formulation by

Rumelhart, Hinton, and Williams (1986)

Backpropagation Learning
• Generalized delta rule:

– Consider sequential learning mode: for a given sample (xp, dp)

– Update of weights by gradient descent

For weight in w(2, 1):

For weight in w(1, 0):

– Derivation of update rule for w(2, 1):

since E is a function of lk = dk – ok, dk – ok is a function ,

and is a function of , by chain rule

 k kplE 2
,)(

)/()1,2(
,

)1,2(
, jkjk wEw 

)/()0,1(
,

)0,1(
, ijij wEw 

)1,2(
, jkw

)2(
knet

)2(
knet

Backpropagation Learning

– Derivation of update rule for

consider hidden node j:

weight influences

it sends to all output nodes

 all K terms in E are functions of

)1(
jnet)0,1(

,ijw

)()1(
jnetS

)0,1(
,ijw

)1(
,

)1(

)1(

)1(

)1(

)2(

)2(

)2()(

ij

j

j

j

j

k

k

k

k w

net

net

x

x

net

net

netS

o

E





















i

j

ok

)0,1(
,ijw

)1,2(
, jkw

)0,1(
,ijw









i ijijjj

j jkjkkkk kk

wxnetnetSx

wxnetnetSoodE

)0,1(
,

)1()1()1(

)1,2(
,

)1()2()2(2

),(

,),(,)(

by chain

rule

Backpropagation Learning

– Update rules:

for outer layer weights w(2, 1) :

where

for inner layer weights w(1, 0) :

where

)(')()2(
kkkk netSod 

)(')()1()1,2(
, jk jkkj netSw 

Weighted sum of errors

from output layer

Note: if S is a logistic function,

then S’(x) = S(x)(1 – S(x))

Backpropagation Learning

• Pattern classification:

– Two classes: 1 output node

– N classes: binary encoding (log N) output nodes

better using N output nodes, a class is represented as

(0,..., 0,1, 0,.., 0)

– With sigmoid function, nodes at output layer will never be 1 or

0, but either 1 – ε or ε.

– Error reduction becomes slower when moving into saturation

regions (when ε is small).

– For fast learning, for a given error bound ε,

set error lp,k = 0 if |dp,k – op,k| ≤ ε

– When classifying a input x using a trained BP net, classify it to

the kth class if with dk. > dl for all l != k

Backpropagation Learning

• Pattern classification: an example

– Classification of myoelectric signals

• Input pattern: 3 features (NIF, VT, RR), normalized to real
values between 0 and 1

• Output patters: 2 classes: (success, failure)

– Network structure: 2-5-3

• 3 input nodes, 2 output nodes,

• 1 hidden layer of 5 nodes

• η = 0.95, α = 0.4 (momentum)

– Error bound ε = 0.05

– 332 training samples

– Maximum iteration = 20,000

– When stopped, 38 patterns remain misclassified

38 patterns misclassified

Backpropagation Learning

• Function approximation:

– For the given w = (w(1, 0), w(2,1)), o = f(x): it realizes a functional
mapping from f .

– Theoretically, feedforward nets with at least one hidden layer of
non-linear nodes are able to approximate any L2 functions (all
square-integral functions, including almost all commonly used
math functions) to any given degree of accuracy, provided there
are sufficient many hidden nodes

– Any L2 function f (x) can be approximated by a Fourier series

The MSE converges to 0 when N → 

It has been shown the Fourier series approximation can be realized
with Feedforward net with one hidden layer of cosine node
function

– Reading for grad students (Sec. 3.5) for more discussions

• Great representation power

– Any L2 function can be represented by a BP net

– Many such functions can be approximated by BP learning

(gradient descent approach)

• Wide applicability of BP learning

– Only requires that a good set of training samples is available

– Does not require substantial prior knowledge or deep

understanding of the domain itself (ill structured problems)

– Tolerates noise and missing data in training samples (graceful

degrading)

• Easy to implement the core of the learning algorithm

• Good generalization power

– Often produce accurate results for inputs outside the

training set

Strengths of BP Learning

• Learning often takes a long time to converge
– Complex functions often need hundreds or thousands of epochs

• The net is essentially a black box

– It may provide a desired mapping between input and output
vectors (x, o) but does not have the information of why a
particular x is mapped to a particular o.

– It thus cannot provide an intuitive (e.g., causal) explanation for
the computed result.

– This is because the hidden nodes and the learned weights do not
have clear semantics.
• What can be learned are operational parameters, not general,

abstract knowledge of a domain

– Unlike many statistical methods, there is no theoretically well-
founded way to assess the quality of BP learning
• What is the confidence level one can have for a trained BP net, with

the final E (which may or may not be close to zero)?

• What is the confidence level of o computed from input x using such
net?

Deficiencies of BP Learning

• Problem with gradient descent approach
– only guarantees to reduce the total error to a local minimum.

(E may not be reduced to zero)

– Cannot escape from the local minimum error state

– Not every function that is representable can be learned

– How bad: depends on the shape of the error surface. Too
many valleys/wells will make it easy to be trapped in local
minima

– Possible remedies:

• Try nets with different # of hidden layers and hidden nodes
(they may lead to different error surfaces, some might be better
than others)

• Try different initial weights (different starting points on the
surface)

• Forced escape from local minima by random perturbation (e.g.,
simulated annealing)

• Generalization is not guaranteed even if the error is
reduced to 0
– Over-fitting/over-training problem: trained net fits the

training samples perfectly (E reduced to 0) but it does not
give accurate outputs for inputs not in the training set

– Possible remedies:
• More and better samples

• Using smaller net if possible

• Using larger error bound
(forced early termination)

• Introducing noise into samples

– modify (x1,…, xn) to
(x1α1,…, xn αn) where αn are
small random displacements

• Cross-Validation

– leave some (~10%) samples as test data (not used for weight update)

– periodically check error on test data

– Learning stops when error on test data starts to increase

• Network paralysis with sigmoid activation function
– Saturation regions:

– Input to an node may fall into a saturation region when
some of its incoming weights become very large during
learning. Consequently, weights stop to change no matter
how hard you try.

– Possible remedies:
• Use non-saturating activation functions

• Periodically normalize all weights

increases of magnitude fast the how regardless

 valueits changeshardly)(region, saturation ain falls When

.when

0))(1)(()(' derivative its ,)1/(1)(

x

xSx

x

xSxSxSexS x



 

2.,, /: kjkjk www 

• The learning (accuracy, speed, and generalization) is
highly dependent of a set of learning parameters

– Initial weights, learning rate, # of hidden layers and # of
nodes...

– Most of them can only be determined empirically (via
experiments)

• A good BP net requires more than the core of the learning
algorithms. Many parameters must be carefully selected to
ensure a good performance.

• Although the deficiencies of BP nets cannot be completely
cured, some of them can be eased by some practical means.

• Initial weights (and biases)

– Random, [-0.05, 0.05], [-0.1, 0.1], [-1, 1]

– Normalize weights for hidden layer (w(1, 0)) (Nguyen-Widrow)

• Random assign initial weights for all hidden nodes

• For each hidden node j, normalize its weight by

• Avoid bias in weight initialization:

Practical Considerations

2

)0,1()0,1(
,

)0,1(
, / jijij www  

nodesinput of # nodes,hiddent of #  nm

ionnormalizatafter
2

)0,1(jw

 7.0 where n m

• Training samples:

– Quality and quantity of training samples often determines the

quality of learning results

– Samples must collectively represent well the problem space

• Random sampling

• Proportional sampling (with prior knowledge of the problem space)

– # of training patterns needed: There is no theoretically idea

number.
• Baum and Haussler (1989): P = W/e, where

W: total # of weights to be trained (depends on net structure)

e: acceptable classification error rate

If the net can be trained to correctly classify (1 – e/2)P of the P

training samples, then classification accuracy of this net is 1 – e for

input patterns drawn from the same sample space

Example: W = 27, e = 0.05, P = 540. If we can successfully train the

network to correctly classify (1 – 0.05/2)*540 = 526 of the samples,

the net will work correctly 95% of time with other input.

• How many hidden layers and hidden nodes per

layer:

– Theoretically, one hidden layer (possibly with many hidden

nodes) is sufficient for any L2 functions

– There is no theoretical results on minimum necessary # of

hidden nodes

– Practical rule of thumb:

• n = # of input nodes; m = # of hidden nodes

• For binary/bipolar data: m = 2n

• For real data: m >> 2n

– Multiple hidden layers with fewer nodes may be trained

faster for similar quality in some applications

• Data representation:

– Binary vs bipolar

• Bipolar representation uses training samples more efficiently

no learning will occur when with binary rep.

• # of patterns can be represented with n input nodes:

binary: 2^n

bipolar: 2^(n-1) if no biases used, this is due to (anti) symmetry

(if output for input x is o, output for input –x will be –o)

– Real value data

• Input nodes: real value nodes (may subject to normalization)

• Hidden nodes are sigmoid

• Node function for output nodes: often linear (even identity)

e.g.,

• Training may be much slower than with binary/bipolar data (some

use binary encoding of real values)

ijij xw  )0,1(
,)1()1,2(

, jkjk xw  

0or 0)1( ji xx

)1()1,2(
, jjkk xwo 

Variations of BP nets

• Adding momentum term (to speedup learning)
– Weights update at time t+1 contains the momentum of the

previous updates, e.g.,

an exponentially weighted sum of all previous updates

– Avoid sudden change of directions of weight update
(smoothing the learning process)

– Error is no longer monotonically decreasing

• Batch mode of weight updates

– Weight update once per each epoch (cumulated over all P
samples)

– Smoothing the training sample outliers

– Learning independent of the order of sample presentations

– Usually slower than in sequential mode

)()()1(then

)()()1(

1
,

,,

sxstw

twxttw

jk

t

s

st
jk

jkjkjk








 



• Variations on learning rate η
– Fixed rate much smaller than 1

– Start with large η, gradually decrease its value

– Start with a small η, steadily double it until MSE start to

increase

– Give known underrepresented samples higher rates

– Find the maximum safe step size at each stage of learning (to

avoid overshoot the minimum E when increasing η)

– Adaptive learning rate (delta-bar-delta method)

• Each weight wk,j has its own rate ηk,j

• If remains in the same direction, increase ηk,j (E has a

smooth curve in the vicinity of current w)

• If changes the direction, decrease ηk,j (E has a rough

curve in the vicinity of current w)

jkw , 

jkw , 

• Experimental comparison

– Training for XOR problem (batch mode)

– 25 simulations with random initial weights: success if E

averaged over 50 consecutive epochs is less than 0.04

– results

method simulations success Mean epochs

BP 25 24 16,859.8

BP with

momentum
25 25 2,056.3

BP with delta-

bar-delta
25 22 447.3

• Quickprop

– If E is of paraboloid shape

if E does not change sign from t-1 to t nor decreased in

magnitude, then its (local) minimum occurs at

• Other node functions

– Change the range of the logistic function from (0,1) to (a, b)

– Change the slope of the logistic function

• Larger slope:

quicker to move to saturation regions; faster convergence

• Smaller slope: slow to move to saturation regions, allows
refined weight adjustment

• s thus has a effect similar to the learning rate η (but more
drastic)

– Adaptive slope (each node has a learned slope)

))(1))((1(
2

1
)(' and ,1)(2)(

have we1), (-1,function sigmoidbipolar for ,particularIn

xgxgxgxfxg 

))(1)(()('

 ,)1/(1)(

xfxfxf

exf x



 

s

s

– Another sigmoid function with slower saturation speed

the derivative of logistic function

– A non-saturating function (also differentiable)

21

12
)('),arctan(

2
)(

x
xfxxf





)1)(1(

1
n larger thamuch is

1

1
 , largeFor

2 xx eex
x

 










 0 if)1log(

0 if)1log(
)(

xx

xx
xf














 x xf

x
x

x
xxf when0)(' then,,

 0 if
1

1

0 if
1

1

)('

• A simple example: Learning XOR

– Initial weights and other parameters

• weights: random numbers in [-0.5, 0.5]

• hidden nodes: single layer of 4 nodes (A 2-4-1 net)

• biases used;

• learning rate: 0.02

– Variations tested

• binary vs. bipolar representation

• different stop criteria

• normalizing initial weights (Nguyen-Widrow)

– Bipolar is faster than binary

• convergence: ~3000 epochs for binary, ~400 for bipolar

• Why?

Applications of BP Nets

)8.0 with and 0.1 withtargets(

Binary

nodes

Bipolar

nodes

– Relaxing acceptable error range may speed up convergence

• is an asymptotic limits of sigmoid function,

• When an output approaches , it falls in a saturation

region

• Use

– Normalizing initial weights may also help

8.0 targets 

0.1

0.1

)8.0 (e.g., 0.10 where  aa

Random Nguyen-Widrow

Binary 2,891 1,935

Bipolar 387 224

Bipolar with 264 127

• Data compression

– Autoassociation of patterns (vectors) with themselves using

a small number of hidden nodes:

• training samples:: x:x (x has dimension n)

hidden nodes: m < n (A n-m-n net)

• If training is successful, applying any vector x on input nodes

will generate the same x on output nodes

• Pattern z on hidden layer becomes a compressed representation

of x (with smaller dimension m < n)

• Application: reducing transmission cost

n nm
V W

Communication
channel

mn
V

n
W

mx xz z

receiversender

– Example: compressing character bitmaps.

• Each character is represented by a 7 by 9 pixel
bitmap, or a binary vector of dimension 63

• 10 characters (A – J) are used in experiment

• Error range:

tight: 0.1 (off: 0 – 0.1; on: 0.9 – 1.0)

loose: 0.2 (off: 0 – 0.2; on: 0.8 – 1.0)

• Relationship between # hidden nodes, error range,
and convergence rate

– relaxing error range may speed up

– increasing # hidden nodes (to a point) may speed up

error range: 0.1 hidden nodes: 10 # epochs 400+

error range: 0.2 hidden nodes: 10 # epochs 200+

error range: 0.1 hidden nodes: 20 # epochs 180+

error range: 0.2 hidden nodes: 20 # epochs 90+

no noticeable speed up when # hidden nodes increases to
beyond 22

• Other applications.

– Medical diagnosis

• Input: manifestation (symptoms, lab tests, etc.)

Output: possible disease(s)

• Problems:

– no causal relations can be established

– hard to determine what should be included as inputs

• Currently focus on more restricted diagnostic tasks

– e.g., predict prostate cancer or hepatitis B based on

standard blood test

– Process control

• Input: environmental parameters

Output: control parameters

• Learn ill-structured control functions

– Stock market forecasting

• Input: financial factors (CPI, interest rate, etc.) and

stock quotes of previous days (weeks)

Output: forecast of stock prices or stock indices (e.g.,

S&P 500)

• Training samples: stock market data of past few years

– Consumer credit evaluation

• Input: personal financial information (income, debt,

payment history, etc.)

• Output: credit rating

– And many more

– Key for successful application

• Careful design of input vector (including all

important features): some domain knowledge

• Obtain good training samples: time and other cost

• Architecture
– Multi-layer, feed-forward (full connection between

nodes in adjacent layers, no connection within a layer)
– One or more hidden layers with non-linear activation

function (most commonly used are sigmoid functions)

• BP learning algorithm

– Supervised learning (samples (xp, dp))
– Approach: gradient descent to reduce the total error

(why it is also called generalized delta rule)
– Error terms at output nodes

error terms at hidden nodes (why it is called error BP)
– Ways to speed up the learning process

• Adding momentum terms
• Adaptive learning rate (delta-bar-delta)
• Quickprop

– Generalization (cross-validation test)

Summary of BP Nets

• Strengths of BP learning

– Great representation power

– Wide practical applicability

– Easy to implement

– Good generalization power

• Problems of BP learning

– Learning often takes a long time to converge

– The net is essentially a black box

– Gradient descent approach only guarantees a local minimum error

– Not every function that is representable can be learned

– Generalization is not guaranteed even if the error is reduced to zero

– No well-founded way to assess the quality of BP learning

– Network paralysis may occur (learning is stopped)

– Selection of learning parameters can only be done by trial-and-error

– BP learning is non-incremental (to include new training samples, the

network must be re-trained with all old and new samples)

